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L-Pipecolic acid I(-PA, 1) is a lysine metabolite found in
numerous microbial, plant, and animal species. In addition to
its occurrence as the free amino acidPA is also a key
structural element in several clinically important natural products
including the immunosuppressant FK-3@d the glycosidase
inhibitor swainsoning. Although L-PA is found in most
mammalian tissues, the major routeLelysine degradation is
throught-saccharopine? in a process resembling the reversal
of lysine biosynthesis in yeast and fungi (Scheme 1, path*A).
In mammalian brain, the enzyme activities for the saccharopine
pathway are not detectable andlysine is predominantly
catabolized via_.-PA (Scheme 1, path B). Pipecolic acid is
also formed in other tissues, notably liver and kidney, but
p-lysine appears to be the specific precursor.

The oxidative degradation efPA begins with formation of
the imine Al-piperideine-6-carboxylateAl-P6C,3). In some

J. Am. Chem. S0d.997,119, 6446-6447

Scheme 1
+
HeN, H
- ):\/\/\+
0,C NH3
L-Lysine
Path A Path B
(liver, kidn%_KG NADH \\(CNS)
+
HaN. H + H, CO5
NG NAD e
~0,C HaN
NH
HS 1
'ozc/2\>\co; FAD,,
f\ L-Glu FADeq
HaN, H €02
3N, | N
X o, = WY
-Ogc \O |
4
\ 3
+
HaN, H
- 0,0 co,
5

anticonvulsants, we have started a program to develop specific
inhibitors of primate_-pipecolate oxidase {PO; EC 1.5.3.73%17

bacteria and nonprimates, this activity has been assigned to alhe enzyme has been purified and characterized from Rhesus
flavin-dependent dehydrogenase associated with the electronmonkey liver and shown to be a peroxisomal, membrane-

transport process; whereas, in primates, the oxidation is
catalyzed by a peroxisomal oxidas®. The saccharopine and
pipecolate paths converge at the common intermediate
aminoadipate}-semialdehyde4), which is further oxidized to
L-a-aminoadipate5).

The specific formation of-PA fromL-lysine in the CNS;10
together with the identification of a specific degradative system,
indicates thafl might occupy a particular neurological role. A
variety of evidence suggests tHafunctions as a neuromodu-
lator, interacting withy-aminobutyric acid (GABA) receptor
complexes to potentiate GABAergic inhibitory neurotransmis-
sion! Several clinically useful antiepileptic drugs, including
phenobarbital and diazepam, act by affecting the GABA-
activated chloride ion channéls. In contrast to the possible
neuroprotective action af-PA, L-a-aminoadipate) is toxic
to cultured cerebellar cell$ affectsL-glutamate transpott,and
lowers glutathione level®

To better define the neurological function of lysine metabo-
lites in the CNS and explore strategies for developing new
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associated, 46 kDa monomer possessing a covalent FAD
cofactor!® |-PO requires molecular oxygen and generatg3,H

in addition to the imine3. Specific inhibitors ofL.-PO would
elevate synaptic levels df and its associated neurological
effects while simultaneously lowering amounts of the neurotoxic
o-aminoadipates). Identification of which hydrogen from C-6
of L-PA is removed during the oxidation will aid in the design
of the most selective inactivators 6fPO. Herein, we describe
the preparation of stereospecifically deuteratd@(R)-2H} - and
L-{6(9-2H} pipecolic acids and present results from kinetics and
product characterization experiments demonstrating thairthe
6(R) hydrogen of_-PA is stereospecifically removed by Rhesus
monkey liverL-PO.

L-Pipecolic acids deuterated at tlpeo-6(S and pro-6(R)
positions were prepared by a modified procedure reported for
the synthesis of 6-alkyl-PA derivatives® Briefly, the key
intermediates required, phenyloxazolidinopiperidibesnd 7,
were prepared in two steps fror8){ and R)-phenylglycinol,
respectively. Treatment &for 7 with boron trifluoride etherate
in THF followed by reduction with NaBH3CN yielded the
deuterated lactone8 and 9 (Scheme 2). Deprotection by
catalytic hydrogenolysis and purification using cation exchange
chromatography afforded the enantiomes5(R)-2H} pipecolic
acid (10) andL-{6(9-2H} pipecolic acid {1) in greater than 95%
ee. CompoundOwas converted to-{ 6(R)-°H} PA (12) using
a combined enzymatic and chemical procedure employing
p-amino acid oxidasenfAAO) and NaBH,.2° The conversion
of 10to 12 was monitored by chiral HPLC and continued until
the configuration at C-2 wag 95% S2!

The first insight into the stereochemical course of the
oxidation came from kinetics studies evaluating the effect of
deuterium position at C-6 on the reaction rate. Rhesus monkey
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oxidation of1, 11, and12. Assays were conducted in a total volume

of 0.5 mL at 37°C in 40 mM Tris, 80 mM KCI, 0.8 mM EGTA, pH

liver L-PO was isolated according to the literature procedure 8.5 buffer containing 2@L L-PO solution, 32Q«M o-dianisidine, 1.8

and judged to be at least 90% homogenous by SDS-PKGE. units of horseradish peroxidase, and various concentratioh(mj,

Enzyme activity was monitored spectrophotometrically using 11 (4) and 12 (®). Reactions were initiated with the addition of

a dye-linked assay coupling the production ofCH to the _substrate. and followed spectrophotometrlcally by monitoring the

horseradish peroxidase-catalyzed oxidatioro-afianisidine?2 increase in absorbance at 460 nm. Each point represents the average

Figure 1 shows plots of the initial velocity data for the rate of of duplicate measurements.

theL-PO-catalyzed oxidation df, 11, and12 as a function of Table 1. Apparent Kinetic Deuterium Isotope Effects for the

substrate concentration. The kinetic parameters and isotopeOxidation ofL-Pipecolic Acid by Rhesus Monkey Liver

effects calculated from these data are given in Tabfé 1. L-Pipecolate Oxidagé

Placement of deuterium in tharo-6(S) position (L1) had no K,2oP

detectable effect on the reaction rate, while a primary kinetic supstrate (mM)

isotope effect 0Vnax PV = 3.5, was observed for the oxidation

of 12. This provides evidence for the stereospecific removal

of the pro-6(R) hydrogen of pipecolic acid and indicates that 12

C—H bond cleavage is at least partially rate-determining.
Confirmation that thepro-6(R) hydrogen is removed from

L-PA was obtained from mass spectrometric analysis of the

derivatized and isolated oxidation products. Compoundg,

and 12 were individually incubated with-PO for 14 h, and

the resultingx-aminoadipate}-semialdehydes were derivatized

as the phenylthiohydantoins (PTH) by treatment with pheny!

isothiocyanaté* The PTH derivatives were purified using{C
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12: Ry =H; Ry =2H

maxe?(nmol
min~mg)
6.0+09 113+7
6.0+ 0.8 114+ 6
6.3+15 32.2+4.2

VinaKm oV D(V/K)

18.9+ 3.2
19.1+2.6 1.0+£0.1 1.0£0.2
51+14 35+05 3.7+1.2

In summary, the data described above provide conclusive
evidence that pipecolate oxidase stereospecifically removes the
pro-6(R) hydrogen of-pipecolic acid. This is vital information
for developing the most selective inactivators of this enzyme
| which may lead to a better understanding of lysine metabolism
in the CNS.
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